A Lease based Hybrid Design Pattern for Proper-Temporal-Embedding of Wireless CPS Interlocking

Feng Tan, Yufei Wang, Qixin Wang, Lei Bu, and Neeraj Suri

Abstract—Cyber-Physical Systems (CPS) integrate discrete-time computing and continuous-time physical-world entities, which are often wirelessly interlinked. The use of wireless safety critical CPS (control, healthcare etc.) requires safety guarantees despite communication faults. This paper focuses on one important set of such safety rules: Proper-Temporal-Embedding (PTE), where distributed CPS entities must enter/leave risky states according to properly nested temporal pattern and certain duration spacing. Our solution introduces hybrid automata to formally describe and analyze CPS design patterns. We propose a novel leasing based design pattern, along with closed-form configuration constraints, to guarantee PTE safety rules under arbitrary wireless communication faults. We propose a formal procedure to transform the design pattern hybrid automata into specific wireless CPS designs. This procedure can effectively isolate physical world parameters from affecting the PTE safety of the resultant specific designs. We conduct two wireless CPS case studies, one on medicine and the other on control, to show that the resulted system is safe against communication failures. We also compare our leasing based approach with a polling based approach. The results show that both approaches can support PTE under arbitrary communication failures. In terms of resource occupation efficiency and user experience, the polling based approach performs better under severely adverse wireless medium conditions; while ours performs better under benign or moderately adverse wireless medium conditions.

Keywords—Cyber-physical systems, properly nested locking, mutual exclusion, hybrid systems model checking, real-time.

1 INTRODUCTION

To introduce the CPS context [1], we consider a classical system approach and annotate it with CPS specifics.

Consider a distributed CPS system where each entity has an abstract “safe” state and an abstract “risky” state. During idle time, all entities dwell in their safe states. However, to accomplish a collective task, a distributed procedure must be carried out: relevant entities must enter respective risky states in a fixed order and with certain required temporal spacing; and then (after the intended task is done) exit to the respective safe states in exactly the reverse order, and with certain required temporal spacing. Furthermore, each entity’s continuous dwelling time (i.e. the duration that it continuously stays in the state) in its “risky” state must be upper bounded by a constant. The safety rules encompassing these discrete ordering and continuous-time temporal conditions define a temporal interlocking pattern, and is termed as Proper-Temporal-Embedding (PTE) safety rules.

As an example of PTE safety (see Fig. 1), in the classic medical CPS of laser tracheotomy [2], the oxygen ventilator must first enter the pause state, and then the laser-scalpel must first exit the emission state. Otherwise, the laser emission can trigger fire on the oxygen ventilated trachea of the patient. Conversely, the laser-scalpel must first exit the emission state, and then the ventilator can exit the pause state. Thirdly, certain minimal temporal spacing must be maintained during enter/exit of “risky” states, as shown by t_1 and t_2 in Fig. 1 (e.g., t_1 means that only after the oxygen ventilator has paused for t_1 can laser start emission, otherwise the patient’s trachea may still have high enough oxygen concentration to catch fire; note this “pause t_1 before laser emission” approach is chosen in real practice because hard real-time and error-free trachea oxygen level sensing is impractical). Fourthly, the continuous dwelling time, as shown by t_3 and t_4 in Fig. 1, must each be upper bounded by a constant (e.g., the ventilator pause duration t_3 must be upper bounded, for otherwise the patient may suffocate to death). Modeling these sequenced CPS operations constitute design patterns.

Furthermore, as CPS environment entails wireless-connected sensing, control and computing entities, guaranteeing PTE safety rules necessitates consideration of
unreliable wireless communication. Thus, we utilize and adapt the established design pattern of “leasing” [3–[1]], to ensure auto-reset of distributed entities under communication faults. The basic idea is that each entity’s dwelling duration in risky state is “lease” based (aka leasing based). A lease is a timer, which takes effect when the entity enters the risky state. When the lease expires, the entity exits the risky state, no matter if it receives exit command from another entity or not.

Lease based design pattern has been widely adopted in distributed computer systems, particularly distributed storage and database systems. We find it can also be applied to cyber-physical systems, where discrete and continuous states intermingle. Compared to the many existing leasing based designs in computer systems, the wireless CPS leasing based design faces the following paradigm shifts.

First, leasing based designs in computer (i.e. cyber) systems are often integrated with distributed check-point and roll-back [3–[6]]. However, in CPS, computers often have little control over the physical world states: these states cannot be check-pointed or rolled-back. For example, we cannot revive a killed patient; nor can we recover a piece of burnt wood.

Second, in addition to logic-time, continuous-time durations (e.g. the maximal dwelling duration and safeguard interval in PTE safety rules) matter.

Considering the above paradigm shifts, our leasing based design pattern shall not use check-point or roll-back. Instead, its safety is guaranteed by properly configuring continuous-time temporal parameters.

These heuristics are systematically developed into a lease based design pattern for wireless CPS PTE safety guarantee in this paper. Specifically, this paper’s contributions include:

1. We formalize a temporal interlocking/mutual-exclusion pattern (i.e. PTE safety rules) for CPS physical component interactions.
2. We propose a rigorous leasing based design pattern for wireless CPS; and identify a set of closed-form constraints on software (i.e. cyber) configuration parameters. We prove that as long as these constraints are satisfied, the design pattern guarantees PTE safety rules under arbitrary packet losses over wireless.
3. We propose utilizing hybrid modeling [9–[11]] to describe and analyze CPS design patterns. Hybrid modeling is a formal technique to describe/analyze both the discrete and continuous dynamics of a system, hence it is suitable for CPS. Recently, hybrid modeling has gained popularity for CPS, though to our best knowledge, it is mostly used for verification and we are the first to apply it to CPS design pattern research.
4. We propose a formal methodology to refine the design pattern hybrid automata into specific wireless CPS designs. This methodology can effectively isolate physical world parameters (which are much harder to control, compared to the software/cyber parameters) from affecting the PTE safety of the resultant specific wireless CPS designs.
5. We conduct two case studies, respectively on wireless medical CPS and wireless control CPS, to validate our proposed approach. We also compare our approach with a polling based approach proposed by Kim et al [12]. The comparison results show that both approaches can guarantee PTE safety against arbitrary communication failures. In terms of resource occupation efficiency and user experience, the polling based approach performs better under severely adverse wireless medium conditions; while ours performs better under benign or moderately adverse wireless medium conditions.

The rest of the paper is organized as follows. Section 2 introduces the CPS hybrid modeling background; Section 3 describes the requirements to guarantee PTE safety rules; Section 4 formally defines the leasing based design pattern, proves its guarantee of PTE safety rules, and describes how to elaborate the design pattern into specific designs. Section 5 and 6 respectively evaluate our proposed approach with emulation/experiment based case studies and simulation based comparisons. Section 7 discusses related work. Section 8 concludes paper. Appendices are included in the Supplementary File [13] as an indispensable and integral part of this paper.

The conference version of this paper is published in [14]. Compared to [14], in this paper, we give more case studies and comparisons, and fixed several typos (see Supplementary File Appendix I [13] of this paper).

2 BACKGROUND, TERMS AND MODELS

2.1 The Hybrid Modeling Terminology

Hybrid modeling is based on hybrid automaton [9–[11], [15], [16], a tool that suits CPS modeling extremely well because it can formally describe/analyze both discrete (cyber) and continuous (physical) dynamics. For example, Fig. 2 illustrates a hybrid automaton A_{vent} that describes the discrete/continuous behaviors of a standalone ventilator (see Appendix A of [13] for a more detailed description on the ventilator’s working mechanism). $H_{vent}(t)$ is the height of the ventilator piston at time t. The hybrid automaton execution initially dwells in the location of “PumpOut”: the piston continuously moves downward at velocity $H_{vent}(t) = -0.1(\text{m/s})$. When the piston hits bottom ($H_{vent} = 0$), a discrete event happens: the execution moves to location “PumpIn”. Once in location “PumpIn”, the piston continuously moves upward at velocity $H_{vent}(t) = +0.1(\text{m/s})$. When the piston hits ceiling ($H_{vent} = 0.3(\text{m})$), a discrete event happens: the execution moves to location “PumpOut” again, so on and so forth.

In the rest of the paper, we reuse the notations proposed by Alur et al. [11] to formally describe hybrid automata. For reader’s convenience, the notation list is
2.2 System and Fault Model

A hybrid system \mathcal{H} is a collection of hybrid automata (each is called a member hybrid automaton of \mathcal{H}), which execute concurrently and coordinate with each other via event communications (i.e., the sending/receiving of synchronization labels). For simplicity, in this paper, we assume no shared data state variables nor shared locations between different hybrid automata of a hybrid system. That is, data state variable names or location names are local to their respective hybrid automata.

A distributed sink-based wireless CPS consists of the following entities: a base station ξ_0 and N (in this paper, we require $N \geq 2$) remote entities $\xi_1, \xi_2, \ldots, \xi_N$. A wireless communication link from the base station to a remote entity is called a downlink; and a wireless communication link from a remote entity to the base station is called an uplink. We assume that there is no direct wireless communication links between any two remote entities (such practice is desirable for wireless applications with high dependability requirements [17], [18]).

We assume that each packet’s checksum is strong enough to detect any bit error(s); a packet with bit error(s) is discarded at the receiver. Our fault model assumes that packets sent via wireless can be arbitrarily lost (not received at all, or discarded at the receiver due to checksum errors). As per PTE safety requirements, the uplink communication delays are specified and handled by the base station. For the downlink, the remote entities locally specify delays as acceptable or as lost-messages.

3 Specification of PTE Safety Rules

For the wireless CPS system and communications fault model described in Section 2.2, various safety requirements can be proposed. Addressing all of them is beyond the scope of this paper. Instead, this paper considers a representative subset of such safety requirements, i.e. the requirement to guarantee PTE safety rules. We start by defining these safety rules.

Let hybrid system $\mathcal{H} = \{A_i \mid i = 0, 1, \ldots, N\}$ describe a wireless CPS. The hybrid automaton A_i describes wireless CPS member entity ξ_i. The synchronization labels/functions describe the communication relationships between these hybrid automata.

We assume that for each hybrid automaton $A_i = (\bar{x}_i(t), V_i, \text{inv}_i, F_i, E_i, g_i, r_i, L_i, \text{syn}_i, \Phi_{0, i})$ (where $i = 1 \sim N$), V_i is partitioned into two subsets: V_{safe} and V_{risky}. We call a location v a “safe-location” if $v \in V_{\text{safe}}$; and a “risky-location” if $v \in V_{\text{risky}}$ (note we do not differentiate the safe/risky locations for ξ_0).

There are two types of PTE safety rules, namely:

PTE Safety Rule 1 (Bounded Dwelling): Each entity ξ_i’s ($i = 1 \sim N$) continuous dwelling time (i.e. continuous-stay time-span) in risky-locations is upper bounded by a constant.

To describe the second PTE safety rule, however, we must first introduce the following definition.

Definition 1 (Proper-Temporal-Embedding Partial Order): We say that entity ξ_i and ξ_j has a proper-temporal-embedding partial order $\xi_i \prec \xi_j$ iff their respective hybrid automata A_i and A_j always satisfy the following properties:

p1. If ξ_i dwells in safe-locations at time t (i.e. A_i’s location counter $\ell_i(t) \in V_{\text{safe}}$), then throughout interval $[t, t + T_{\text{min}}^{\text{risky} : i \rightarrow j}]$, ξ_j dwells in safe-locations, where positive constant $T_{\text{min}}^{\text{risky} : i \rightarrow j}$ is the ξ_i to ξ_j enter-risky safeguard interval.

p2. Whenever ξ_j dwells in risky-locations, ξ_i dwells in risky-locations.

p3. If ξ_j dwells in risky-locations at time t, then throughout interval $[t, t + T_{\text{min}}^{\text{risky} : j \rightarrow i}]$, ξ_i dwells in risky-locations, where positive constant $T_{\text{min}}^{\text{risky} : j \rightarrow i}$ is the ξ_j to ξ_i exit-risky safeguard interval.

Intuitively, Property p2 implies that whenever entity ξ_j is in risky-locations, then entity ξ_i is already in risky-locations. Property p1 and p3, in addition, specify the safeguard interval requirements that ξ_i and ξ_j enter/exit respective risky-locations. Specifically, Property p1 implies that before ξ_j enters its risky-locations, ξ_i should have already been in risky-locations for at least $T_{\text{min}}^{\text{risky} : i \rightarrow j}$. Property p3 implies that after ξ_j exits its risky-locations (i.e. returns to safe-locations), ξ_i must stay in risky-locations for at least $T_{\text{min}}^{\text{risky} : j \rightarrow i}$.

The above intuition is illustrated by Fig. 1, where in laser tracheotomy, ventilator \prec laser-scalpel, if we consider “pause” and “emission” are risky-locations and “ventilating” and “shutoff” are safe-locations.

With this notion of PTE partial ordering, the second PTE safety rule is defined as:

```
```

1. To make an analogy, each hybrid automaton is like a class in Object-Oriented programming. Data state variables and locations are like class members, hence are “local” (“encapsulated”) to their respective hybrid automata (classes). Interactions between hybrid automata are carried out via message (aka event) passing.
PTE Safety Rule 2 (Proper-Temporal-Embedding): The proper-temporal-embedding partial ordering between entities $\xi_1, \xi_2, \ldots, \xi_N$ forms a full ordering.

In the following, for narrative simplicity and without loss of generality, we assume that PTE Safety Rule 2 implies a full ordering of

$$\xi_1 < \xi_2 < \ldots < \xi_N. \quad (1)$$

We call a safety rule set belongs to the category of PTE safety rules if and only if the rule set consists of and only of PTE Safety Rule 1 and 2. As mentioned before, in this paper, we shall only focus on wireless CPS whose safety rules belong to the category of PTE safety rules. For simplicity, we call such wireless CPS “PTE wireless CPS”.

4 DESIGN PATTERN based SOLUTIONS

To guarantee PTE safety rules described in the previous section, we propose a leasing based design pattern approach.

4.1 Leasing based Design Pattern

For a PTE wireless CPS, we assume that safety is guaranteed if all its member entities stay in their safe-locations. The challenge arises when a remote entity needs to enter its risky-locations. When a remote entity ξ_k ($k \in \{1, 2, 3, \ldots, N\}$) of a PTE wireless CPS requests to enter its risky-locations, PTE Safety Rule 2 and Ineq. (1) imply that entity $\xi_0, \xi_1, \ldots, \xi_k$ must coordinate. This may be achieved through wireless communications (uplink/downlink) via the base station ξ_0. However, wireless communications are by nature unreliable. Messages may be lost, and the states of participating entities may become inconsistent, violating the PTE safety rules.

To deal with the unreliable wireless communications, we propose a “lease” based design pattern, and (in the subsequent subsections) show that as long as the PTE wireless CPS design complies with the proposed design pattern, the PTE safety rules are guaranteed.

Specifically, there are three roles for PTE wireless CPS entities: Supervisor, Initializer, and Participant. The base station ξ_0 serves the role of “Supervisor”. Initially, all entities stay in their respective safe-locations. We only allow one remote entity to proactively request switching to its risky-locations. Such a remote entity is called an “Initializer”. For the time being, let us assume there is only one Initializer, and without loss of generality, assume the Initializer is remote entity ξ_N.

According to PTE Safety Rule 2 and Ineq. (1), when ξ_N requests to enter risky-locations, remote entity $\xi_1, \xi_2, \ldots, \xi_{N-1}$ must enter respective risky-locations before ξ_N. Remote entities $\xi_1, \xi_2, \ldots, \xi_{N-1}$ hence play the role of “Participants”.

We require that every entity ξ_i’s ($i \in \{0, 1, 2, \ldots, N\}$) dwelling in risky-locations is based on a lease, i.e. a contract between the Supervisor and ξ_i. A lease specifies the expiration time of dwelling in the risky-locations, and takes effect upon the entrance to risky-locations. If by the lease expiration, the Supervisor has not yet aborted/cancelled the lease, ξ_i will exit to safe-location automatically.

The above thinking guides us to propose the design of Supervisor, Initializer, and Participant as shown in Table 1. We respectively denote the Supervisor, Initializer, and (the ith) Participant’s defining hybrid automata (see Table 1) as $A_{\text{supv}}, A_{\text{iniz}}, A_{\text{pcart}, i}$. These hybrid automata’s diagrams in Table 1 (and the respective detailed diagrams in Appendix C of [13]) are elaborated in the following.

Supervisor:
1. A_{supv}’s location set V_{supv} include the following locations: “Fall-Back”, “Lease ξ_i” (where $i = 1 \sim N$), “Cancel Lease ξ_i” (where $i = 1 \sim N$), and “Abort Lease ξ_i” (where $i = 1 \sim N$).
2. Initially, the Supervisor dwells in location “Fall-Back”, and all data state variables initial values are zero.
3. When in location “Fall-Back”, if an event $\text{evt}\xi_N \text{To}\xi_0 \text{Req}$ is received (which is sent by the Initializer requesting for entering risky-locations, see the descriptions for A_{iniz} in the following paragraph), and the Supervisor has been continuously dwelling in “Fall-Back” for at least T_{\min} and the application dependent proposition ApprovalCond holds, then the Supervisor transits to location “Lease ξ_i”. Along this transition, the Supervisor sends out event $\text{evt}\xi_0 \text{To}\xi_1 \text{LeaseReq}$, requesting leasing Participant ξ_1.
4. When in location “Lease ξ_i” (where $i = 1 \sim N - 1$), the behavior of Supervisor can be described by Fig. 3 (a).
5. When in location “Lease ξ_N”, the behavior of Supervisor can be described by Fig. 3 (b).
6. When in location “Cancel Lease ξ_i” (where $i = 1 \sim N$), the behavior of Supervisor can be described by Fig. 3 (c).
7. When in location “Abort Lease ξ_i” (where $i = 1 \sim N$), the behavior of Supervisor can also be described by Fig. 3 (c), except that every occurrence of “Cancel” is replaced by “Abort”.

Initializer:
1. A_{iniz}’s location set V_{iniz} include the following locations: “Fall-Back”, “Requesting”, “Entering”, “Risky Core”, “Exiting 1”, and “Exiting 2”. V_{iniz}’s location set include the following locations: “Fall-Back”, “Requesting”, “Entering”, “Risky Core”, “Exiting 1”, and “Exiting 2”.
2. In fact, this “transition” includes two consecutive transitions, the first one is on receiving event $\text{evt}\xi_N \text{To}\xi_0 \text{Req}$, Supervisor enters an intermediate location of 0 dwelling time; and then transit from this intermediate location to “Lease ξ_i” and send out $\text{evt}\xi_0 \text{To}\xi_1 \text{LeaseReq}$. For narrative simplicity, if the following, such intermediate locations between two consecutive events are not elaborated.
TABLE 1
Specifications of Supervisor, Initializer, and Participant

<table>
<thead>
<tr>
<th>Role</th>
<th>Conceptual Description of Behaviors</th>
<th>Hybrid Automata Specifications1,2,3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supervisor</td>
<td>Conceptually, the Supervisor $ξ_0$ shall start from a “Fall-Back” location. Whenever the Initializer $ξ_N$ requests leasing itself to enter risky-locations, the Supervisor shall lease Participants $ξ_1, ξ_2, \ldots, ξ_{N-1}$ according to PTE ordering first. After all $ξ_1 \sim ξ_{N-1}$ are leased (i.e. $ξ_1 \sim ξ_{N-1}$ enter respective risky-locations), the Supervisor approves $ξ_N$’s lease request to enter risky-location. The Initializer $ξ_N$ can also request to cancel the leases; or when an application dependent proposition ApprovalCondition is violated (e.g. in laser tracheotomy wireless CPS, ApprovalCondition means blood oxygen level SpO_2 is higher than threshold $θ_{SpO_2}$), Supervisor $ξ_0$ can abort leases. Lease cancellations/aborts are conducted in the reverse PTE order.</td>
<td></td>
</tr>
</tbody>
</table>

| Initializer | Conceptually, the Initializer $ξ_N$ shall start from a “Fall-Back” location. It can randomly request to lease itself to enter risky-locations. If this request is approved by the Supervisor $ξ_0$, $ξ_N$ enters risky-locations. The dwelling in risky-locations can be cancelled by $ξ_N$ or aborted by $ξ_0$ at any time; otherwise, $ξ_N$ returns to “Fall-Back” when the lease expires. |

| (i)th Participant | Conceptually, a Participant $ξ_i$ ($i = 1 \sim N-1$) shall start from a “Fall-Back” location. Upon receiving lease request from the Supervisor $ξ_0$, and if the lease is approved, the Initializer $ξ_N$ enters risky-locations. The dwelling in risky-locations can be cancelled by the Initializer $ξ_N$ or aborted by the Supervisor $ξ_0$ at any time; otherwise, $ξ_i$ returns to “Fall-Back” when the lease expires. |

1. All hybrid automata diagrams here are sketches. Please refer to Appendix C in [13] for respective detailed diagrams.
2. The hybrid automata for Supervisor, Initializer, and (the i)th Participant are respectively denoted as A_{supvsr}, A_{initzr}, and A_{ptcpnt}.
3. Note as mentioned in Section 2.2, all data state variables and location names are local to the corresponding hybrid automata (just like in O-O programming, all class member variables are local to the class, in contrast to global variable names). For example, A_{supvsr}’s “Fall-Back” location is not A_{initzr}’s “Fall-Back” locations, although the two locations has the same name. Same way, A_{supvsr}’s t_{clk} data state variable (see Fig. 11 in Appendix C of [13], the detailed diagram of A_{supvsr}) is not A_{initzr}’s t_{clk} data state variable (see Fig. 12 in Appendix C of [13], the detailed diagram of A_{initzr}).

include location “Risky Core” and “Exiting 1”; all other locations belong to V_{safe}.

2. Initially, the Initializer $ξ_N$ dwells in location “Fall-Back”; and all data state variables initial values are zero.

3. When in location “Fall-Back” with continuous dwelling duration over $T_{min,N}$, the Initializer $ξ_N$ can send event $evt_{ξ_NToξ_0Req}$ and transit to “Requesting” at any time.

4. When in location “Requesting”, the Initializer $ξ_N$ can send event $evt_{ξ_NToξ_0Cancel}$ and transit back to “Fall-Back” at any time. Secondly, if $ξ_N$ dwells continuously in “Requesting” for $T_{req,N}$, it will automatically transit back to “Fall-Back”. Thirdly, if event $evt_{ξ_0Toξ_NLeaseApprove}$ is received, $ξ_N$ transits to “Entering”.

5. When in location “Entering”, the Initializer $ξ_N$ can send event $evt_{ξ_NToξ_0Cancel}$ and transit to “Exiting 2”. Secondly, if $evt_{ξ_0Toξ_NAbort}$ is received, $ξ_N$ also transits to “Exiting 2”. Thirdly, if $ξ_N$ dwells continuously in “Entering” for $T_{max,N}$, it transits to “Risky Core”.

6. When in location “Risky Core”, the Initializer $ξ_N$ can send event $evt_{ξ_NToξ_0Cancel}$ and transit to “Exiting 1”. Secondly, if $evt_{ξ_0Toξ_NAbort}$ is received, $ξ_N$ also transits to “Exiting 1”. Thirdly, if $ξ_N$ dwells continuously in “Risky Core” for $T_{max,N}$, it also transits to “Exiting 1”.

7. When in location “Exiting 1” or “Exiting 2”, the Initializer $ξ_N$ must continuously dwell in the location for $T_{exit,N}$, and then transit to “Fall-Back” and send event $evt_{ξ_NToξ_0Exit}$.

Participant

1. A_{ptcpnt}’s location set V_{ptcpnt} include the following locations: “Fall-Back”, “L0”, “Entering”, “Risky Core”, “Exiting 1”, and “Exiting 2”. V_{ptcpnt} include location “Risky Core” and “Exiting 1”; all other locations belong to V_{safe}.

2. Initially, Participant $ξ_i$ dwells in location “Fall-Back”, and all data state variables initial values are zero.
3. When in location “Fall-Back” with continuous dwelling duration over $T_{\text{LS1}}^{\text{min}}$, upon receiving event $\text{evt}_{0}\text{To}_{\xi_i}\text{LeaseReq}$, ξ_i transits to a temporary location “L0”.

4. When in “L0”, if an application dependent proposition ParticipationCondition sustains, ξ_i sends event $\text{evt}_{0}\text{To}_{\xi_i}\text{LeaseApprove}$ and transits to “Entering”; otherwise, ξ_i sends event $\text{evt}_{0}\text{To}_{\xi_i}\text{LeaseDeny}$ and transits back to “Fall-Back”.

5. When in location “Entering”, if event $\text{evt}_{0}\text{To}_{\xi_i}\text{Cancel}$ or $\text{evt}_{0}\text{To}_{\xi_i}\text{Abort}$ is received, ξ_i transits to “Exiting 2”. Otherwise, if ξ_i dwells continuously in “Entering” for $T_{\text{enter,i}}^{\text{max}}$, it transits to “Risky Core”.

6. When in location “Risky Core”, if event $\text{evt}_{0}\text{To}_{\xi_i}\text{Cancel}$ or $\text{evt}_{0}\text{To}_{\xi_i}\text{Abort}$ is received, ξ_i transits to “Exiting 1”. Otherwise, if ξ_i dwells continuously in “Risky Core” for $T_{\text{run,i}}^{\text{max}}$, it also transits to “Exiting 1”.

7. When in location “Exiting 1” or “Exiting 2”, Participant ξ_i must continuously dwell in the location for $T_{\text{exit,i}}^{\text{max}}$, and then transit to “Fall-Back” and send event $\text{evt}_{0}\text{To}_{\xi_i}\text{Exit}$.

4.2 Design Pattern Validity

We now analyze the validity of the proposed design pattern. As mentioned before, the main threat to PTE wireless CPS is the unreliable wireless communications. Event reception between the Supervisor, Initializer, and Participants can be lossy. If some important events are not received, the holistic system can enter an inconsistent state, which jeopardizes PTE safety rules.

A main contribution of this paper is that we prove that by properly configuring the time constants of the aforementioned $A_{\text{superv}}, A_{\text{initiz}},$ and $A_{\text{ptcptn}},$ PTE safety rules are guaranteed despite any communication faults. Specifically, we have the following result.

Theorem 1 (Design Pattern Validity): Given a hybrid system H of ξ_0 as “Supervisor” (i.e. behaves per A_{superv}), ξ_N ($N \geq 2$) as “Initializer” (i.e. behaves per A_{initiz}), and ξ_i ($i = 1, 2, \ldots, N - 1$) as “Participants” (i.e. behaves per A_{ptcptn}), Suppose H starts with all entities (i.e. $\xi_0 \sim \xi_N$) residing in location “Fall-Back”, and satisfies conditions c1 \sim c7:

1. All configuration time constants ($T_{\text{wait}}, T_{\text{run},i}, T_{\text{LS1}}^{\text{max}}, T_{\text{req},N}^{\text{max}}, T_{\text{max},i}, T_{\text{run},i}^{\text{max}}, T_{\text{req},N}^{\text{max}}, T_{\text{max},i}, T_{\text{run},i}^{\text{max}}, T_{\text{exit},i}^{\text{max}}$, where $i = 1 \sim N$) are positive.

2. $T_{\text{LS1}}^{\text{max}} \geq T_{\text{enter},1}^{\text{max}} + T_{\text{run},1}^{\text{max}} + T_{\text{exit},1}^{\text{max}} > NT_{\text{wait}}$.

3. $(N - 1)T_{\text{wait}}^{\text{max}} < T_{\text{req},N}^{\text{max}} < T_{\text{LS1}}^{\text{max}}$.

4. $\forall i \in \{1, 2, \ldots, N\}$, there is $$(i - 1)T_{\text{wait}}^{\text{max}} + T_{\text{enter},i}^{\text{max}} + T_{\text{run},i}^{\text{max}} + T_{\text{exit},i}^{\text{max}} \leq T_{\text{LS1}}^{\text{max}}$$.

5. $\forall i \in \{1, 2, \ldots, N - 1\}$, there is $$T_{\text{enter},i}^{\text{max}} + T_{\text{run},i}^{\text{max}} < T_{\text{LS1}}^{\text{max}}.$$
c. \(\forall i \in \{1, 2, \ldots, N-1\} \), there is
\[
T_{\text{max}}^{\text{enter},i} + T_{\text{max}}^{\text{run},i} > T_{\text{max}}^{\text{wait}} + T_{\text{max}}^{\text{enter},i+1} + T_{\text{run},i+1} + T_{\text{exit},i+1}.
\]

c7. \(\forall i \in \{1, 2, \ldots, N-1\} \), there is \(T_{\text{exit},i} > T_{\text{max}}^{\text{safe};i+1} \).

Then we have:

Claim 1 (Safety): Even if events sent between entities can be arbitrarily lost, \(\mathcal{H} \) still guarantees PTE safety rules. That is, every entity's continuous dwelling time in risky-locations is upper bounded by \(T_{\text{max}}^{\text{wait}} + T_{\text{max}}^{\text{LSI}} \), and the PTE full ordering of \(\xi_1 < \xi_2 < \ldots < \xi_N \) is maintained.

Claim 2 (Liveness): Let \(P_{\text{PER}}^{N,0} \) denote the packet error rate of the communication channel from the “Initializer” \(\xi_N \) to “Supervisor” \(\xi_0 \). If \(P_{\text{PER}}^{N,0} < 100\% \), i.e. \(\xi_N \) can send events to \(\xi_0 \) after all. Then \(i \) suppose at \(t_0 \) all entities (i.e. \(\xi_0 \sim \xi_N \)) reside in “Fall-Back”, then starting from \(t_0 \), every \(T_{\text{time}}^{\text{min}} + T_{\text{req},N} \) second, \(\xi_N \) has at least one chance to send \(\text{evt}_{\xi_0}^{\xi_N} \) to \(\xi_0 \), until \(\xi_0 \) leaves location “Fall-Back”; \(ii \) suppose \(\xi_0 \) non-zero-ly leaves location “Fall-Back” at \(t_0 \) (i.e. \(\xi_0 \) is not at “Fall-Back” at \(t_{\text{req}} \)), let \(T_{\text{reset}}^{\text{def}} = (N-1)T_{\text{wait}}^{\text{max}} + T_{\text{LSI}}^{\text{max}} + T_{\text{run},N} + T_{\text{req},N} + N_T \), \(T_{\text{exit},N} \), then \(\exists t \in (t_0, t_{\text{req}}, T_{\text{reset}}) \), such that all entities (i.e. \(\xi_0 \sim \xi_N \)) return to location “Fall-Back” at \(t \).

\begin{proof}
The sketch of the proof is as follows.

First we can prove if the given parameters satisfy Conditions c1 \(\sim \) c7, and that all entities start from “Fall-Back” location, the system will reset itself to “Fall-Back” within \(T_{\text{wait}}^{\text{max}} + T_{\text{LSI}}^{\text{max}} \) every time \(\text{evt}_{\xi_0}^{\xi_N} \) LeaseReq happens. This is mainly because of the leases: even if messages are lost, leases will expire to guarantee the return to “Fall-Back” of the Initializer and every Participant.

Second, we prove between any two consecutive \(\text{evt}_{\xi_0}^{\xi_N} \) LeaseReq events (or the last such event and time \(\infty \)), any entity can only dwell in the risky-locations for once.

Third, due to Conditions c1 \(\sim \) c7, for each \(\xi_i \) and \(\xi_{i+1} \) (\(i = 1 \sim N-1 \)), the aforementioned single dwelling intervals of \(\xi_i \) and \(\xi_{i+1} \) satisfies PTE enter-risky/exit-risky safeguard interval requirements.

The detailed proof appears in Supplementary File Appendix D [13] of this paper.
\end{proof}

4.3 Methodology to Transform Design Pattern into Specific Designs

In the conference version of this paper [14], we further proposed a methodology to transform the aforementioned design pattern hybrid automata \(A_{\text{supvsr}}, A_{\text{initzr}} \), and \(A_{\text{ptcpnt},i} \) into specific PTE compliant wireless CPS designs. We call this methodology “elaboration”.

The intuition of elaboration is that every location \(v \) of \(A_{\text{supvsr}}, A_{\text{initzr}} \), and \(A_{\text{ptcpnt},i} \) can be expanded with a child hybrid automata \(A' \). As long as \(A' \) is sufficiently independent (i.e. orthogonal) from the rest part of \(A_{\text{supvsr}}, A_{\text{initzr}} \), and \(A_{\text{ptcpnt},i} \), it will not interfere the design pattern’s guarantee on PTE safety rules.

Fig. 4 illustrates an example of elaboration. Denote the hybrid automaton of Fig. 2 to be \(A_{\text{vent}} \). We use \(A_{\text{vent}} \) to elaborate hybrid automaton \(A \) of Fig. 4 (a) at location “Fall-Back”. The resulted elaboration is the hybrid automaton \(A' \) of Fig. 4 (b).

5 Case Study

Next, we carry out two case studies to validate our proposed leasing based hybrid design pattern approach. The case studies are respectively on medical CPS and control CPS, two major categories of CPS applications.

5.1 Laser Tracheotomy Wireless Medical CPS

Scenario and Design:
In laser tracheotomy wireless medical CPS (see Fig. 5 (a) for the application layout), a patient is under anesthesia, hence must be connected to a ventilator to breathe oxygen. However, a surgeon may randomly request a laser-scalpel to emit laser, to cut the patient’s trachea. Therefore, PTE safety rules apply as follows. Before the emission of laser, the ventilator must have paused for at least \(T_{ \text{risky} : 1 \rightarrow 2} = \min \) (we regard the ventilator as entity \(\xi _{1} \), the Participant; and the laser-scalpel as entity \(\xi _{2} \), the Initializer); after the emission of laser, the ventilator must wait for at least \(T_{ \text{safe} : 2 \rightarrow 1} = \max \) before resuming. Otherwise, if high concentration of oxygen in the patient’s trachea (due to ventilation) is present when laser emits, the patient’s trachea can catch fire. In addition, the durations that the laser-scalpel can continuously emit and that the ventilator can continuously pause shall respectively be upper-bounded by a constant.

\[
T_{\text{min}} = \min (3 \text{s}) \quad T_{\text{max}} = \max (5 \text{s})
\]

Per Theorem 2 (see Supplementary File Appendix E [13] of this paper), the above configurations guarantee PTE safety rules. To further validate this, we implemented and carried out emulations of the above design.

Emulation Setup:

Fig. 5 (b) illustrates the layout of our emulation. The laser tracheotomy ventilator, supervisor, and (surgeon operated) laser-scalpel are respectively emulated by three computers. The patient is emulated by a real human subject (HS).

Instead of actually ventilating the human subject HS, the ventilator emulator displays its current hybrid automata location (“PumpOut”, “PumpIn”, etc.). Human subject HS watches the display and breathe accordingly.

We also emulate the following three kinds of events, which cause all other events in the emulated system.

The first is the Initializer event \(\text{evt}_{\xi _{2} \rightarrow \xi _{0} \text{Req}} \), triggered when the laser-scalpel is in “Fall-Back” and the surgeon requests to supervisor to emit laser. In the real system, this is triggered by the surgeon’s human will. In our emulation, however, this is emulated by (re-)initializing a timer \(T_{\text{on}} \) (\(T_{\text{on}} \) follows exponential distribution) whenever the laser-scalpel enters “Fall-Back”. When in “Fall-Back” and \(T_{\text{on}} \) sets off, the (emulated) surgeon requests to emit laser.

The second kind is the Initializer event \(\text{evt}_{\xi _{2} \rightarrow \xi _{0} \text{Cancel}} \), triggered when the laser-scalpel is emitting and the surgeon cancels the request to emit laser. Again in a real system, this is triggered by the surgeon’s human will. In our emulation, this is emulated by (re-)initializing a timer \(T_{\text{off}} \) (\(T_{\text{off}} \) follows exponential distribution) whenever the laser-scalpel enters “Risky Core” (i.e. starts emission). When in “Risky Core” and \(T_{\text{off}} \) sets off, the (emulated) surgeon requests to cancel laser emission.

The third kind is the Supervisor event \(\text{evt}_{\xi _{0} \rightarrow \xi _{i} \text{Abort}} \) (\(i = 1 \sim N \)), triggered when the surgeon is in “Lease \(\xi _{i} \)” location and \(\text{ApprovalCondition} \) becomes false. In our emulation, the human subject HS wears an oximeter (Nonin 9843 [20]), which measures HS’s blood oxygen level in real-time \(t \) (\(\text{SpO}_{2}(t) \)). The oximeter is wired to the laser tracheotomy supervisor emulator. The \(\text{ApprovalCondition} \) is that the oximeter reading \(\text{SpO}_{2}(t) > \Theta _{\text{SpO}_{2}} \), where \(\Theta _{\text{SpO}_{2}} \) is set to 92%.

The supervisor, ventilator, and laser-scalpel emulators communicate with each other via wireless, with supervisor as base station, and the other two as clients. Their wireless interfaces are implemented via 2.45GHz ZigBee TMote-Sky motes [21]. In addition, there is an IEEE 802.11g WiFi interference source 2 meters away from the supervisor. The interference source runs Iperf (a standard network evaluation software, see http://iperf.sourceforge.net) to generate 3Mbps interfering data traffic to be broadcasted through a WiFi radio band overlapping with that of the ZigBee TMote-Sky motes.
Because the interference broadcast is independent from the laser tracheotomy wireless CPS communications, any packets/events between the supervisor, ventilator, and laser-scalpel emulation computers can be lost.

5.2 Inverted Pendulum Remote Monitoring Wireless Control CPS

Scenario and Design:

Inverted Pendulum (IP) is a metal rod (the pendulum) with one end hinged on a cart, and the other end free rotating. The cart can move along a rail (the “x-axis”) to keep the hinged rod standing up-right still. Due to its inborn instability, IP is a widely adopted test bed for various control strategies, including control CPS [22] [23].

In our IP remote monitoring case study (see Fig 6 for the application layout), the IP (entity ξ_2, the Initializer) may randomly request for a random walk, i.e. randomly adjust the cart’s reference location (i.e. the target stabilization location) on the rail. Because random walk is considered a risky operation, the entire duration of random walk, including $T_{\text{min}}^{\text{risky}:1\rightarrow2}$ seconds right before the random walk, and $T_{\text{min}}^{\text{safe}:2\rightarrow1}$ seconds right after the random walk, must be continuously monitored/recorded by a remote video camera (entity ξ_1, the Participant). The video record can be used for real-time decision making, or for future analysis, debugging, or accident forensics. Meanwhile, we do not allow infinite random walk, hence the duration of each random walk, and the corresponding duration of remote monitoring are upper bounded.

![Inverted Pendulum Diagram](image)

Fig. 6. (a) Inverted Pendulum (IP) remote monitoring wireless control CPS; (b) Experiment Layout

Similar to the laser tracheotomy case, the monitoring camera and the IP are wirelessly connected to the supervisor (entity ξ_0). The supervisor/initializer can abort/cancel the random walk at any time, but the PTE safety rules must be maintained.

Meanwhile, as the supervisor, IP, and camera are connected via wireless, message losses are possible. Therefore, we carry out our leasing based design approach, so that even with message losses, the wireless CPS can maintain PTE safety rules.

The detailed design of hybrid automata in IP remote monitoring (see Appendix F in [13]) is similar to the laser tracheotomy case, except that in “Risky Core” location, the IP conducts random walk, and the camera conducts video recording. We configure the time parameters of the detailed design hybrid automata as follows. For the Supervisor, $T_{\text{min}}^{\text{risky}:0\rightarrow1} = 0.1(s)$, $T_{\text{max}}^{\text{risky}:1\rightarrow2} = 1.0(s)$. For the Initializer (i.e. the IP), $T_{\text{max}}^{\text{init}:2\rightarrow1} = 0.1(s)$, $T_{\text{max}}^{\text{enter}:2\rightarrow1} = 3.0(s)$, $T_{\text{run}:2\rightarrow1} = 20(s)$, $T_{\text{exit}:2\rightarrow1} = 2.5(s)$. For the Participant 1 (i.e. the camera), $T_{\text{max}}^{\text{enter}:1\rightarrow2} = 1.0(s)$, $T_{\text{max}}^{\text{run}:1\rightarrow2} = 35.0(s)$, $T_{\text{exit}:1\rightarrow2} = 6(s)$. The PTE enter-risky/exit-risky safeguard intervals are $T_{\text{min}}^{\text{risky}:1\rightarrow2} = 1.0(s)$ and $T_{\text{min}}^{\text{safe}:2\rightarrow1} = 1.5(s)$. The above settings satisfy condition $c_1 \sim c_7$ in Theorem 1, meanwhile allow reasonable duration length for random walk and monitoring.

Experiment Setup:

We implemented the IP remote monitoring detailed design, and carried out experiment evaluation. Fig. 6 (b) shows our experiment layout. The layout and settings are the same as those of our laser tracheotomy emulation, except that the laser scalpel emulator, ventilator emulator, and (laser tracheotomy) supervisor are respectively replaced by the IP, camera, and the (IP remote monitoring) supervisor.

5.3 Trials and Results

For laser tracheotomy wireless medical CPS (IP remote monitoring wireless control CPS), we ran two emulation (experiment) trials, each of 30 minutes duration. During the trials, the PTE safety rules are:

1. Neither ventilator pause (camera monitoring) nor laser emission (IP random walk) can last for more than 1 minute;
2. Ventilator pause (camera monitoring) duration must always properly-temporally-embedding laser emission (IP random walk) duration, with entering/exitting safeguard interval of $T_{\text{min}}^{\text{risky}:1\rightarrow2} = 3$ seconds (1 second) and $T_{\text{min}}^{\text{safe}:2\rightarrow1} = 1.5$ second (1.5 second).

Violation of either of the PTE safety rules is a failure.

As mentioned before, in the two trials, the emulated surgeon (IP) requests to emit/cancel-emit laser (start/cancel random walk) according to timer T_{on} and T_{off}, which are both random numbers following exponential distribution. The expectation of T_{on} is 30 seconds. The expectations of T_{off} are 18 seconds and 6 seconds respectively in the two trials.

Because of the use of our proposed leasing based design pattern, and the configuration of parameters satisfying Theorem 2 (see Supplementary File Appendix E [13] of this paper), although packets/events between the ventilator emulator (camera), supervisor, and laser-scalpel emulator (IP) can be arbitrarily lost, the PTE safety rules are never violated. This is shown in Table 2, the rows corresponding to “with Lease” always have 0 failures.

For comparison, for each case study, we also ran two additional emulation (experiment) trials with the same configurations but without using the leasing mechanism. Specifically, the ventilator (camera) does not set up a
lease timer when it starts pausing (monitoring), neither does the laser-scalpel (IP) set up a lease timer when it starts emitting laser (random walk). When the surgeon’s cancel laser emission event (the IP’s cancel random walk event) is lost or the supervisor’s abort event is lost, no one can terminate the ventilator’s pause (the camera’s monitoring) or the laser’s emission (the IP’s random walk). Thus, as shown in Table 2, the rows corresponding to “without Lease” all result in many failures.

To facilitate understanding of the above results, in the following, we provide some more intuitive explanations.

Without loss of generality, let us focus on the laser tracheotomy case study.

Because of leasing, the ventilator’s stay in the pause state (i.e. risky-locations) expires on lease time-out; hence it will automatically return to “Fall-Back” to continue ventilating the patient, even when it is cut-off from communications. Same applies to the laser-scalpel’s stay in the emission state (i.e. risky-locations). Conditions $c_1 \sim c_7$ of Theorem 1 further guarantee that the automatic returns to “Fall-Back” of ventilator and laser-scalpel both conform to proper-temporal-embedding even under arbitrary packet/event losses.

Interested readers can refer to Appendix G of [13] for more intuitive explanations.

6 Comparisons

PTE safety is a relatively new issue raised by CPS. To our best knowledge, the state-of-the-art solution is a polling based approach proposed by Kim et al. [12].

6.1 Polling Based Approach

Kim et al. [12]’s polling based approach also adopts a layout of distributed entities, with a base station and several remote entities. The base station also serves the role of the Supervisor; one remote entity is the Initializer, and the other remote entities serve the role of Participants. However, different from our leasing based approach, the Supervisor does not passively wait for messages sent from the Initializer to trigger a sequence of PTE operations. Instead, it periodically polls remote entities for their current states. The polling message is also piggy backed with a plan vector. The plan vector is basically instructions on what the remote entity shall do in the current and future periods, assuming communication link with the base station will be broken in the future periods. Also, the remote entities cannot change their (cyber) states (though the Initializer can request to start/cancel a sequence of PTE operations), unless instructed by the plan vector from the Supervisor.

For example, the plan vector for laser-scalpel may set the laser-scalpel to keep emitting for the next two periods and then deactivate in the third period; whereas the plan vector for ventilator may ask the ventilator to keep pausing in the next four periods. The Supervisor coordinates these plan vectors, ensuring the PTE safety rules are guaranteed. The polling temporal sequence (exemplified by the case of laser tracheotomy) is shown in Fig 7.

<table>
<thead>
<tr>
<th>Trial</th>
<th>Laser Tracheotomy Emulation</th>
<th>Mode</th>
<th>$E(T_{off})$ (sec)</th>
<th># of Laser Emissions</th>
<th># of Failures</th>
<th># of evtRunEnded</th>
</tr>
</thead>
<tbody>
<tr>
<td>with Lease</td>
<td>18</td>
<td>19</td>
<td>0</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>without Lease</td>
<td>18</td>
<td>11</td>
<td>4</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>with Lease</td>
<td>6</td>
<td>19</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>without Lease</td>
<td>6</td>
<td>12</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Trial</th>
<th>IP Remote Monitoring Experiment</th>
<th>Mode</th>
<th>$E(T_{off})$ (sec)</th>
<th># of IP random walks</th>
<th># of Failures</th>
<th># of evtRunEnded</th>
</tr>
</thead>
<tbody>
<tr>
<td>with Lease</td>
<td>18</td>
<td>12</td>
<td>0</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>without Lease</td>
<td>18</td>
<td>11</td>
<td>6</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>with Lease</td>
<td>6</td>
<td>15</td>
<td>0</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>without Lease</td>
<td>6</td>
<td>13</td>
<td>7</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Each trial lasts 30 minutes, and is under constant WiFi interference.
2. For each trial, the expectation $E(T_{off}) = 30$ sec.
3. evtRunEnded occurs when lease expiration forces the laser-scalpel (IP) to stop emitting (random walk), i.e. when lease mechanism takes effect to rescue the system from violating the PTE safety rules.

For our leasing based approach, the simulation setup described Section 5 as the application background. Particularly, the PTE safety demands remain the same.

For the polling approach, we follow the instructions in [12]. The detailed designs and parameter configurations are given in Appendix H of [13]. There are two issues worth particular mentioning.

The first issue is on the choice of polling period. The longer the polling period, the less wireless messages sent per second, and hence better wireless medium occupation efficiency (when the wireless medium is benign or moderately adverse). On the other hand, the polling...
period can neither be too long, due to two reasons. First, the polling based approach assumes all remote entities’ physical state change within a polling period is negligible (unless the plan vector instructs the remote entity to conduct a state change). Second, response time to user requests is at least one polling period; and for good user experience, under benign or moderately adverse wireless medium conditions, the response time should be within tens of milliseconds [24] [25]. Considering the above factors, we set the polling period at 50(ms).

The second issue is on the choice of other configuration parameters. Note PTE safety rules only care about worst case time bounds (e.g., the laser emission must take place at least 1.5 seconds after the ventilator has paused). Within these time bound constraints, many feasible configurations exist for both the polling and the leasing based approaches (e.g. the laser emission can take place 2 seconds, or 3 seconds after the ventilator has paused). To make our comparisons fair, the polling and leasing based approach parameters are configured so that the default (i.e. when there is no cancellation nor abort, and no communication packet loss) behaviors of ξ_1, \ldots, ξ_N are the same under both approaches3.

6.3 Results and Analysis

Based on aforementioned analysis, emulations, and experiments, we know that both our leasing based approach and Kim et al. [12]’s polling based approach can guarantee PTE safety rules under arbitrary wireless communication failures. However, their performance, specifically, wireless medium occupation efficiency and user experience, may be different.

To strictly quantify the two performance indicators, we further consider three wireless medium conditions: benign, moderately adverse, and adverse, respectively corresponds to a Packet Error Rate (PER) of 0.5%, 5%, and 50%.

For each approach (leasing based vs. polling based), each application (laser tracheotomy, IP remote monitoring), and each wireless medium condition, we run 1000 simulation trials. In each trail, all entities start from "Fall-Back"-equivalent locations/states4, and then the Initializer will request to run a complete sequence of PTE operations. The Initializer will keep requesting until approval is received from the Supervisor5. Suppose the Initializer started to request at t_0, and first received the Supervisor’s approval at t_1, we call the duration $(t_1 - t_0)$ the “initialization response time”.

Once the Initializer enters its “Risky-Core” location/state, it (re-)initializes a timer T_{off}. T_{off} follows exponential distribution with an expectation of 18(s). If T_{off} sets off and the Initializer is still in “Risky-Core” location/state, the Initializer requests to cancel the risky activity (i.e. laser emission or IP random walk). Suppose the Initializer requests to cancel the risky activity at t_2, and suppose if no message is lost, the Participant can return to “Fall-Back” location/state at t_3. Meanwhile, denote the actual time the Participant returns to “Fall-Back” location/state to be τ. Then we call the difference $(t_3 - \tau)$ the “extra suffering time”. Extra suffering time quantifies the extra suffering time endured by the Participant due to message losses in the cancellation process. That is, the Initializer has cancelled the risky activity, but the Participant is not notified, hence has to suffer longer, waiting for the leasing or polling mechanism to return it to “Fall-Back” location/state.

We use initialization response time and extra suffering time to quantify user experiences. For both metrics, the shorter means better user experience (quicker response or less extra suffering). Wireless medium occupation, however, is quantified by the ratio of time used for wireless transmission during the whole interval of $[t_0, t_3]$. The higher the ratio, the worse the wireless medium occupation efficiency (i.e. the more wasteful of the wireless medium).

The simulations results for laser tracheotomy are summarized in Fig. 8. We can make several observations from these figures.

First, our leasing based approach incurs less wireless medium occupation ratio than polling based approach. As shown in Fig. 8 (a)(d), leasing’s wireless medium occupation ratio is upper bounded by 0.65%; while polling’s is lower bounded by 5.69%. Later we will see the impact of this difference on system scalability. This difference is intuitive: our leasing based approach is an event based approach, no messages are sent unless certain event takes place; while polling based approach sends messages every period no matter what. The benefit of wireless medium occupation efficiency will become more significant when we evaluate system scalability (see later paragraphs).

Second, when wireless medium is benign (e.g. PER = 0.5%) or moderately adverse (e.g. PER = 5%), leasing based approach can provide slightly better user experience. As shown in Fig. 8 (b)(e), leasing’s initialization response time is upper bounded by 44ms, while polling’s is lower bounded by 100ms; and as shown in Fig. 8 (c)(f), leasing’s extra suffering time statistics (1st/3rd quartile, median, maximum) are all roughly one order of magnitude shorter than polling’s. This is because under benign or moderately adverse wireless medium condition, packet loss is rare. Under leasing based approach, an event can be immediately responded to; while under
polling based approach, every response must take at least one polling period. However, when wireless medium is severely adverse (e.g. $\text{PER} = 50\%$), polling based approach provides better user experience than leasing based approach (see Fig. 8 (b)(c)(e)(f)). leasing’s maximum initialization response time and extra suffering time can respectively reach 10s and 31.03s, while polling’s only respectively reach 2.52s and 0.671s). This is intuitive: polling based approach is basically continuously retransmitting messages every period, hence has better chance of delivering messages when packet loss rate is high6.

Finally, we also evaluate the scalability of the two approaches. We study an N-IP remote monitoring scenario, where N pairs of IP-camera are being coordinated by a Supervisor. Fig. 9 compares the performances of leasing and polling based approaches when N scales up from 1 to 12 (wireless medium is set to moderately adverse, i.e. $\text{PER} = 5\%$). We can see that polling based approach uses up wireless bandwidth quickly as N grows; when $N = 12$, nearly all wireless bandwidth is used up (91.72% in the worst case). In contrast, our leasing based approach only uses a small portion of the wireless bandwidth for all N values (5.86% in the worst case). This matches intuition, as our leasing based approach carries out event based interrupt-like communication, which is well-known to be more communication resource thrify than polling.

7 Related Work

Lease based design pattern was originally proposed by Gray et al. [3] and is used to provide efficient consistent access to cached data in distributed computer systems. In the past decades, various leasing based distributed computer systems have been implemented to achieve system consistency [4]–[8], [26]. As pointed out in Section 1, all these distributed computer systems are fundamentally different from CPS due to following reasons: 1) check-point and roll-back, two fundamental operations in lease-based distributed computer systems are often impossible for CPS (e.g. we cannot revive a killed patient); 2) PTE temporal ordering, particularly the continuous-time duration requirements (such as the minimal safeguard interval) are usually not present for distributed computer systems (which instead focus on logical-time, aka causal precedences).

6. It is worth noting that initialization response time refers to the duration of a request-reply sequence taking place at the very beginning of PTE (and assuming all entities starts from “Fall-Back”). Therefore, it is irrelevant to most of PTE configuration parameters except $T_{\text{req},N}^\text{max}$, $T_{\text{req},N}^\text{inj,N}$ are the same, hence the comparison is fair. Meanwhile, extra suffering time refers to the difference between actual response time and the ideal response time when $\text{PER} = 0$. Most PTE parameters are cancelled out due to the subtraction, leaving only ξ_j (Participant’s maximum dwelling time in risk-location relevant: in the worst case, the patient (camera) has to suffer this maximum dwelling time longer than the $\text{PER} = 0$ case. Again, this parameter settings are the same for both leasing and polling schemes, hence the comparison is fair.

Although formal methods have been applied to design pattern research [27], [28], hybrid modeling is mostly used for verification [2], [9]–[11], [15]. Recently, Tichakorn [29] proposed a subclass of hybrid automata for a class of hybrid control systems in which certain control actions occur roughly periodically and applied it to verify the safety of an autonomous vehicle. However, the focus there is still verification, rather than design.

8 Conclusion and Future Work

In this paper, we formalize a temporal interlocking/mutual-exclusion pattern called PTE safety rules for CPS physical component interactions. We propose a leasing based design pattern to guarantee PTE safety rules in wireless CPS, as part of the effort to address challenges arising from poor reliability of wireless communication on CPS’ mission/life criticality. We derive a set of closed-form constraints, and prove that as long as system parameters are configured to satisfy these constraints, PTE safety rules are guaranteed under arbitrary wireless communication faults. Furthermore, we develop hybrid modeling approaches to describe the design patterns, and develop a formal methodology to elaborate the design pattern into specific designs that provide PTE safety guarantees. Our case studies on laser tracheotomy wireless CPS and inverted pendulum remote monitoring validate the proposed design methodology. We also compare our solutions with a polling based solution. The comparison results show that the polling based solution performs better under severely adverse wireless medium conditions, while ours performs better under benign or moderately adverse wireless medium conditions. As our future work, we will investigate additional network protocol technologies to enhance wireless communication reliability, hence to further improve the performance of our leasing based approach and the polling based approach. We will also explore more application domains for the proposed design pattern, such as chemical plant safety, anesthesiology, control, where timing (time duration) is an important parameter in defining safety rules.

Acknowledgement

The research project related to this paper is supported in part by Hong Kong RGC ECS PolyU 5328/12E, RGC GRF PolyU 5245/09E, DAAD/RGC Germany/HK Joint Research Scheme G_HK022/12, by The Hong Kong Polytechnic Univ. A-PJ68, A-PJ80, A-PK46, A-PL82, G-YN37. Lei Bu is supported by the National Key Basic Research Program of China2014CB340703 and the National NSFC (No.91318301, No.61321491, No.61100036). Neeraj Suri is supported in part by TUD CASED. We thank Prof. Kong Zheng and reviewers for their advice on improving this paper. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of sponsors.
Fig. 8. Comparisons between Leasing-Based Approach and Polling-Based Approach in Laser Tracheotomy ((a) ∼ (c)) and IP Remote Monitoring ((d) ∼ (f)) Wireless CPS

Fig. 9. Scalability Comparisons between Leasing-Based Approach and Polling-Based Approach (N is the number of IPs being remotely monitored)
REFERENCES

[13] F. Tan et al., "A Lease based Hybrid Design Pattern for Proper-Temporal-Embedding of Wireless CPS Interlocking (Supplementary File)," should be available in the TPDS manuscript submission website (ScholarOne Manuscripts) as it is part of this manuscript submission, please ask TPDS for assistance if you cannot access it; or otherwise, it is also available at http://www.comp.polyu.edu.hk/~csqwang/appendix.html.

Feng Tan received his BE and ME degree in Industrial Engineering from University of Electronic Science and Technology of China, Chengdu, China in 2009 and 2012 respectively. He is currently pursuing the Ph.D degree in the Department of Computing in the Hong Kong Polytechnic University, Hong Kong. His research interests include Cyber-Physical Systems (CPS), particularly on CPS dependability. He is a student member of the IEEE.

Yufei Wang received his BS in Electronics and Information System and MS in Communication and Information System, from Nankai University, Tianjin, China. He received his PhD degree in Computer Science from the Hong Kong Polytechnic University in Hong Kong in 2013. He is currently a senior engineer in Hong Kong Applied Science and Technology Research Institute Company Ltd. His research interests include dependable systems, low latency CPS, etc.

Qixin Wang received his BE and ME degrees from the Department of Computer Science and Technology, Tsinghua University, Beijing, China, in 1999 and 2001 respectively, and PhD degree from the Department of Computer Science, University of Illinois at Urbana-Champaign in 2008. He is currently an Assistant Professor in the Department of Computing at the Hong Kong Polytechnic University. Dr. Wang is a member of the IEEE and the ACM.

Lei Bu is an associate professor in the Department of Computer Science and Technology, State Key Laboratory for Novel Software Technology at Nanjing University, P.R.China. He received his BS and PhD degree in Computer Science from Nanjing University in 2004 and 2010 respectively. He has been a visiting scholar to CMU, Fondazione Bruno Kessler, and UT Dallas. Dr. Bu is also a member of the ACM.

Neeraj Suri received his MS and PhD from the University of Massachusetts at Amherst. He is a Chair Professor at the Dept. of CS at TU Darmstadt and also with the University of Texas at Austin. His professional details are available at http://www.deeds.informatik.tu-darmstadt.de/suri.